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EXECUTIVE SUMMARY

Studies of a suite of stream- and river-sediment samples collected from selected sites in

the Alamosa River basin in 1976 and 1994 were undertaken to determine the geochemical
baseline prior to and following open-pit mining at Summitville. Leaching experiments were
conducted on the minus-100-mesh fraction to determine the mineralogical sites of residence for
ore metals. In addition, the isotopic composition of lead was analyzed on all samples from the
2M HCI-H,0, leachate solution to document the changes in isotopic character of the hydrous
iron- and manganese-oxide mineral phases which carry the bulk of the ore metals. These studies
demonstrate the following:

The leach studies clearly demonstrate that the dominant site of residence for the ore
metals is the hydrous iron- and manganese-oxide coatings and chemical precipitates in the
stream sediments. Hydrous iron- and manganese-oxides are known to coprecipitate
transition metals from acidic metal-bearing waters forming amorphous coatings on detrital
rock fragments in the stream sediments.

The concentration of the metals copper, lead, and zinc in the sediments of the Wightman
Fork downstream from the Summitville deposit were significantly elevated above crustal
abundance values for these metals in both the 1976 and the 1994 sample suites. The
Summitville deposit was the major source of the ore metals to the sediments of the
Alamosa River basin in both 1976 and 1994.

The concentration of aluminum in the river sediments of the Alamosa River below the
confluence of the Wightman Fork was substantially higher in the sediment samples
collected during 1994. This increase in aluminum concentration is estimated to be about
thirty percent. We interpret the data to indicate that the increase in aluminum content is
a result of erosion of clays exposed by the open-pit mining at the Summitville site.

The isotopic composition of lead from acidic metal-bearing seeps in the Summitville open
pit matches well with three published lead-isotopic determinations on galena (Doe and
others, 1979). On the basis of these data, we conclude that the isotopic composition of
lead in the Summitville deposit appears to be uniform with 2*Pb/**Pb = 17.82,
07pb/2%Pb = 15.51, and *®Pb/>*Pb = 37.18.

The isotopic composition of lead in the 1976 stream sediments collected from the
Wightman Fork below the confluence with Cropsy Creek does not match that of the ore
lead from the Summitville deposit. The most reasonable explanation of the lead isotopic
data is that it is controlled by the lead released from weathering of the South Mountain
quartz latite which hosts the Summaitville deposit.

The isotopic composition of lead in the 1994 stream sediments collected from the
Wightman Fork below the confluence with Cropsy Creek has shifted from the value
measured in the 1976 sediments toward the isotopic composition of lead in the base-metal
veins in the Summitville deposit. We calculate that there is a forty percent increase in
the metal load to the Wightman Fork derived from the funneling of surface water into the
adit drainage system that was drained by flow from the Reynolds adit.
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INTRODUCTION

The concentrations of metals in stream sediments have long been used to provide a
convenient measure of the geochemical baseline. Stream sediments represent a well mixed
average of the material in the drainage basin from which they are collected. Furthermore, the
stratigraphic layers that accumulate over time preserve a chronologic record of erosion of the
earth’s surface. In this study we use metal concentrations measured in stream sediments to
document the changes in the geochemical baseline due to the open-pit mining activities at
Summitville. The deposit was open-pitted by the Summitville Consolidated Mining Company,
Inc. (SCMCI) from 1986 to 1992. Two sets of regional stream-sediment samples, one collected
in July, 1976 as a part of the National Uranium Resource Evaluation (NURE) program, and a
second set collected in Sept., 1994 by the Environmental Protection Agency (EPA), were studied
to obtain geochemical and lead-isotopic baseline data from stream sediments for these two time
periods. The changes between the metal concentrations in the two baselines provides a direct
measure of the contribution of metals to the Wightman Fork and the Alamosa Rivers by SCMCI
whereas the contrast between the metal concentrations in sediments from the Wightman Fork and
the other tributaries of the Alamosa River provide a measure of the elevated metal concentrations
in mineralized areas.

Geology of the Alamosa River basin

The Alamosa River has its headwaters on the eastern side of the continental divide in
southwestern Colorado. The headwaters are underlain by Oligocene volcanic and intrusive rocks
largely associated with the eruption of the Platoro caldera which is a part of the larger San Juan
volcanic field (Lipman, 1974, 1975) formed in southern Colorado. During a period of intense
volcanic activity in Oligocene time, large volumes of andesitic to rhyodacitic lavas were erupted
forming the San Juan volcanic field in south-central Colorado (Steven and Lipman, 1976). The
geology of this region is discussed in detail in Lipman (1975) and the evolution of the volcanic
rocks that make up the San Juan volcanic field is developed in Lipman and others (1978). The
Alamosa River drains much of the Platoro caldera and extends east into the older rocks of the
Conejos Formation at Terrace Reservoir. The geology of the Platoro caldera and the surrounding
area is summarized in figure 1 (Gray and Coolbaugh, 1994). Shown on the location map are
other calderas within the San Juan Volcanic field, many of which have major mining districts
associated with them. The Alamosa River basin is largely underlain by the Summitville andesite,
the Treasure Mountain tuff, and to a lesser extent, the Park Creek rhyodacite. Several plutons
subsequently intruded this volcanic pile, substantially altering the rocks and mineralizing several
areas in the upper Alamosa River basin (fig. 2). Within the Alamosa River basin, there are three
areas of alteration that will be discussed here: the South Mountain area, a volcanic dome of
South Mountain quartz latite in which the Summitville open-pit mine is located, the Iron, Alum,
and Bitter Creek drainages, referred to collectively as the Stunner altered area on the upper
Alamosa River (Bove and others, 1995; Walton-Day and others, 1995), and the altered area
surrounding the Jasper stock (the area underlain by the Jasper and Burnt Creek drainage basins).

































Bitter Creek, 6.4, and BC-1, a sample from lower Bitter Creek, 8.5. The EPA sample distances
(mi) on the Wightman Fork traverse are: PK-1, a sample from Park Creek on the west side of
the continental divide, 2.7; PL-0, a sample from Pipeline Creek, 4.0; CC-1, a sample from
Cropsy Creek above the waste pile, 5.3; WF-5.5, a sample from the Wightman Fork just below
the intersection with Cropsy Creek, 5.5; WF-1D, a sample on the Wightman Fork upstream from
Big Hollow Creek, 6.4, WF-1.3, a sample on the Wightman Fork upstream from Whitney Gulch,
9.2; WF-1.0 a sample on the Wightman Fork upstream from Smallpox Gulch, 9.5. The EPA
sample distances (mi) on the Lower Alamosa River (lower Alamosa River) are: AR41.0, sample
on the lower Alamosa River just above Jasper Creek, 13.9; AR39.5, a sample from just below
Burnt Creek, 14.4; AR44.4, (sample run in duplicate) a sample from the bridge crossing near
the Alamosa guard station, 21.5; and AR34.5, a sample from the lower Alamosa River just above
the gaging station, 25.0.

Five separate chemical digestions were performed on either the entire suite of both NURE
and EPA stream-sediment samples or on a subset depending upon the availability of sample
materials. The various leach procedures are briefly discussed below in order of their chemical
reactivity, or their ability to extract metals bound to mineral phases based upon the bonding
energy of these metals. Metals that are adsorbed to minerals are much less tightly bound than
are metals that are a part of the crystalline structure of a mineral.

The weakest extraction performed was the sodium acetate extraction (EPA method 1311);
the analytical results are given in tables Ala (NURE) and Alb (EPA). This extraction procedure
is designed to extract weakly-bound adsorbed metals on clay minerals in soils, that is, metals that
are retained on solid phase material by weak ion exchange associations or weak inorganic and
organic complexation. The degree of extractability is governed by the strength of the ion
exchange binding relative to sodium and the stability of acetate complex (Martell and Smith,
1989). The complexing ability of acetate also acts to keep the extracted transition metals from
readsorbing to solid surfaces including container walls. Acetate extractions are used extensively
in the agricultural studies to identify the fraction of trace elements available to the local plant
population. (Walsh and Beaton, 1973).

The 0.25M hydroxylamine hydrochloride (NH,OH-HCI)--0.25M HCl extraction
(HYDXAMN), the next weakest extraction procedure, was performed to remove metals
associated with the amorphous iron- and manganese-oxide phases (Chao and Zhou, 1983). These
are the mineral phases that form in the stream environment in response to changes in pH and Eh
in the stream and are presumed to be largely responsible for removal of many trace metals that
are associated with the hydrous iron oxides in stream sediments. However, metals associated
with the surface oxidation of the Summitville deposit, that is the crystalline hydrous oxides and
sulfate minerals listed in table 1, such as goethite and jarosite, should not be dissolved. Studies
by Chao (1972) indicated that this extraction procedure does not readily attack the crystalline iron
oxide phases. This differentiation is important in determining the short and long term
geochemical processes that take place in the stream environment. In this procedure, the acidity
(pH 1-2) of the HCl and the redox properties of the hydroxylamine solubilize the iron and
manganese phases which in turn, release metals that were coprecipitated at the time of deposition
or adsorbed later. Analytical results are given in tables A2a (NURE) and A2b (EPA).

The 2M HC1-H,0, extraction (HC1-PRX) was performed to remove metals associated with
all iron- and manganese-oxide mineral phases (Gulson and others, 1992). This is a more robust
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robust digestion than the HYDXAMN leach that will dissolve both the hydrous amorphous and
the crystalline iron- and manganese-oxide minerals that form as a result of surface oxidation of
the Summitville deposit, including the crystalline forms such as goethite and hematite (see the
mineral phases listed in table 1). In addition to the increased acidity, the hydrogen peroxide
produces an oxidizing environment which is capable of attacking selected organic phases present
in the sample. Analytical results are given in tables A3a (NURE) and A3b (EPA).

The EPA 3050 procedure (EPA method 3050) was used to evaluate the total digestable
metal content of the samples and to compare these results with the total-sample digestion
procedure used routinely by the U.S. Geological Survey (Briggs, 1990). In this procedure the
combination of concentrated hydrochloric acid, nitric acid, and hydrogen peroxide produce an
extremely oxidizing solution. This solution is capable of dissolving most element oxides,
sulfides, carbonates, and other more common mineral phases. It will not however decompose
silicate minerals nor extract elements that may be occluded in the silicate phases. Selected oxides
of chromium, zirconium, and titanium and selected major elements are also not attacked, but
recovery levels greater than 90 percent or more are commonly observed for most environmentally
significant elements (Kane and others, 1993). The analytical results from this digestion are given
in the appendix in tables A4a (NURE) and A4b (EPA).

The total-sample digestion procedure (TSD) is a multi-acid decomposition using a
combination of nitric, hydrochloric, hydrofluoric, and perchloric acids that ensures the
decomposition of most minerals, including silicate minerals and titanium and chromium oxides
(Crock and others, 1982; Briggs, 1990). Only zircon, chromite, and selected tin oxides minerals
are resistant to this decomposition procedure. Previous investigations using a variety of reference
materials support the completeness of this decomposition (Church, 1981; Wilson and others,
1994). The analytical results from this digestion are given in the appendix in tables A5a (NURE)
and A5b (EPA). -

Samples were randomized and submitted to the laboratory as blind samples. Analytical
precision and accuracy of the methods was tested by the analysis of standard reference materials
(SRMs) available from the National Institute of Standards and Technology (NBS, 1982; NIST,
1993a, 1993b). Three SRMs were analyzed during the course of this study. The analytical
results (TSD) from these three SRMs compare well with certified values (tables A6 and A7) and
the results from replicate samples are well within routine analytical error limits established by
the USGS laboratories.

Lead-isotopic compositions (tables A8a and A8b) were determined from the 2M HCI-
H,0, extraction solutions to characterize the lead being derived from the tributary streams and
transported to the Alamosa River. Analytical procedures are given in Church and others (1993).
These data were used to evaluate the contribution of metals from the tributaries to the metal load
in the stream sediments of the Alamosa River. Lead-isotopic analyses of water from several
seeps from the Summitville open-pit (Plumlee and others, 1995a) and the sludge from the
Portable Interim Treatment System (PITS) water treatment plant (Roeber and others, 1995)
confirm that the previously published lead-isotopic data from base metal sulfide-bearing barite
veins reported by Doe and others (1979) were representative of this phase of the mineralization
in the Summitville deposit. Limited lead-isotopic data obtained from a petrologic study of the
origin and evolution of the volcanic rocks of the Platoro caldera (Lipman and others, 1978)
provide a basis for the interpretation of the lead-isotope data from the stream sediments.
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RESULTS AND INTERPRETATION

The geochemical data from the different chemical leach studies indicate that two principal
components are present in the stream sediments. The first group of elements includes those
associated with the silicate mineral phases that are detrital fragments of rock eroded into the
streams. The bulk of the ore-metals in the stream sediments are either contained in or associated
with the second principal component which is the hydrous iron- and manganese-oxide coatings
on sediment grains. This association is derived from the coprecipitation of ore-metals by iron
and manganese hydroxides or from the adsorption of dissolved metals by precipitated hydrous
iron- and manganese-oxide coatings. Inspection of the data from the acetate leaches (for
example, see fig. 8) indicates that only a very small component of the ore-metals is weakly
adsorbed on clay minerals. Concentrations of leachable iron in most samples analyzed was less
than the limit of detection (< 10 ppm), zinc and copper concentrations exceed 10 ppm in only
a few samples, and lead and titanium were not detected in the acetate extraction. Most elements
are present in the sodium acetate extraction at or below the analytical limit of detection (tables
Ala and Alb).

In contrast, the data from both the HYDXAMN and the HCI-PRX extractions contain
substantially higher concentrations of iron and some ore-metals. Distribution profiles for selected
metals are shown in figs. 9 and 10. Many elements show very similar distribution profiles.
Large amounts of metal were present in the sediments in the 1994 EPA samples and a second
HCI-PRX extraction of the samples was required. These data are summed and reported in tables
A3a and A3b. We have selected three elements (iron, copper, and lead) to demonstrate the
geochemical variation of metals along the river profiles. Differences between the profiles
obtained for data for the two extraction methods are not significant. Higher metal concentrations
were obtained in the HCI-PRX extraction but the same element profiles were obtained from both
extractions.

Geochemical data from the total-sample digestions (TSD) also show similar profiles for
copper, lead, and zinc (fig. 11). In contrast, yields for the HYDXAMN and HCI-PRX
extractions for metals such as titanium, which are tightly bound in silicate mineral phases or
magnetite, are very low. Cobalt, which is not enriched at the Summitville deposit, showed no
significant enrichment in the sediments below the Summitville deposit nor is there any significant
variation in the total element concentration of cobalt along the profile of the Alamosa River or
Wightman Fork.

We interpret the data from the leach studies of the stream sediments to indicate that the
dominant mineralogical phases for the adsorption of metals are the amorphous hydrous iron- and
manganese-oxide phases. Yields from sites along the Wightman Fork downstream from the
Summitville open-pit indicate that as much as 50 percent of the zinc, lead, and arsenic, and as
much as 90 percent of the copper in the stream sediments are bound in the hydrous iron- and
manganese-oxide phases. Generally, more than half of the ore-metal content in the iron- and
manganese-oxide phases is extractable with the HYDXAMN extraction which we interpret
indicates that the ore metals are adsorbed on the hydrous amorphous iron- and manganese-oxide
phases.
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Concentration (ppm)

Alamosa River basin, Colo.
Copper profiles, 1311 acetate extr.
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Figure 8A. Metal profiles for copper released from stream sediments using the acetate
extraction procedure. Intersections of tributaries are shown at the top of the diagram:
Asiatic Creek (A), Iron Creek (I), Globe Creek (G), Alum Creek (Al), and Bitter Creek
(BY) are tributaries that drain into the upper Alamosa River; Jasper Creek (J), Burnt Creek
(B), Spring Creek (S), and French Creek (F) are tributaries that drain into the lower
Alamosa River; Park Creek (Pk) drains away from the headwaters of the Wightman Fork
to the west, Pipeline Creek (P1) and Cropsy Creek (C) drain into the Wightman Fork.
The Summitville deposit is located just above the confluence of Cropsy Creek with the
Wightman Fork. The intersection of the Wightman Fork with the Alamosa River is at
mile 10.5 and is indicated by the vertical line in the figure.
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Concentration (ppm)

Alamosa River basin, Colo.
Zinc profiles, 1311 acetate extr.
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Figure 8B. Metal profiles for zinc released from stream sediments using the acetate
extraction procedure. Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)

Alamosa River basin, Colo.
Copper profiles, HCI-Hydroxylamine
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Figure 9A. Metal profiles for copper released using the HYDXAMN extraction procedure (Chao
and Zhou, 1983). Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)

Alamosa River basin, Colo.
Lead profiles, HCI-Hydroxylamine
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Figure 9B. Metal profiles for lead released using the HYDXAMN extraction procedure (Chao
and Zhou, 1983). Abbreviations are the same as those used in fig. 8A.
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Concentration (wt. %)

Alamosa River basin, Colo.

Iron profiles, HCI-Hydroxylamine
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Figure 9C. Metal profiles for iron released using the HYDXAMN extraction procedure (Chao

and Zhou, 1983). Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)

Alamosa River basin, Colo.
Copper profiles, 2M HCI-H202 extract
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Figure 10A. Metal profiles for copper released using the HCI-PRX extraction

procedure (Guison and others, 1992). Abbreviations are the same as those used in fig.
8A.
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Concentration (ppm)

Alamosa River basin, Colo.
Lead profiles, 2M HCI-H202 extract
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Figure 10B. Metal profiles for lead released using the HCI-PRX extraction procedure (Gulson
and others, 1992). Abbreviations are the same as those used in fig. 8A.
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Concentration (wt. %)

Alamosa River basin, Colo.

Iron profiles, 2M HCI-H202 extract
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Figure 10C. Metal profiles for iron released using the HCI-PRX extraction procedure (Guison
and others, 1992). Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)
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Alamosa River basin, Colo.
Copper profiles, Total Digestion data
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Figure 11A. Metal profiles for copper using the USGS total digestion procedure (Briggs, 1990).

Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)

Alamosa River basin, Colo.

Lead profiles, Total Digestion data
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Figure 11B. Metal profiles for lead using the USGS total digestion procedure (Briggs, 1990).

Abbreviations are the same as those used in fig. 8A.
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Concentration (ppm)

Alamosa River basin, Colo.
Zinc profiles, Total Digestion data
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Figure 11C. Metal profiles for zinc using the USGS total digestion procedure (Briggs, 1990).
Abbreviations are the same as those used in fig. 8A.
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GEOCHEMICAL ENRICHMENT AND COMPARISONS OF PROFILES FROM THE
1976 NURE STREAM SEDIMENT AND 1994 EPA STREAM SEDIMENT DATA

Copper, lead, and zinc show relatively minor variations in concentration between the two
geochemical baseline sample suites taken in 1976 and 1994 (fig. 11). Minor variations are due
primarily to the metals introduced into the Wightman Fork from the Summitville deposit
(downstream from the confluence of the Wightman Fork with Cropsy Creek at about 5.5 mi).
The lead and copper profiles show that the Summitville deposit contributed large amounts of
copper and lead to the Wightman Fork sediments in both 1976 and 1994. Copper concentrations
in the upper Alamosa River in both baseline suites averages about 30 ppm whereas the copper
concentration in the lower Alamosa River in the 1994 geochemical baseline exceeded 300 ppm.
Similar high values were obtained in the 1976 geochemical baseline at site C26811. Copper
concentrations in stream sediments of the Wightman Fork below Cropsy Creek exceeded 700
ppm in the 1976 geochemical baseline. The geochemical data from the 1994 sediment baseline
indicate that copper concentrations are at substantially the same levels, but the data show more
scatter, probably due to differences in sampling techniques.

Lead concentrations in sediments of the lower Alamosa River remained constant at about
60 ppm in both the 1976 and the 1994 baselines. Lead concentrations in the upper Alamosa
River exceeded 25-30 ppm; higher concentrations were seen in the tributaries from the Stunner
area. Similar values were found in the Park Creek and Pipeline Creek drainages above the
Summitville deposit. Lead concentrations in stream sediments of the Wightman Fork below
Cropsy Creek were about 200 ppm in both the 1976 and the 1994 geochemical baselines. Zinc
concentrations in the lower Alamosa River appear to be lower in the 1994 profile (about 100
ppm) suggesting that the pH of the water has decreased sufficiently since 1976 to retard the
adsorption of zinc onto the hydrous iron- and manganese-oxide phases.

Major changes in the mineralogy of the sediment loads between the two geochemical
baselines are also evident from the major element data. Changes in the concentrations of iron
in the sediments of the lower Alamosa River are indicated by comparisons of the two
geochemical baselines (fig. 12a). These changes are rather subtle and the data are perturbed by
the high iron concentrations from site AR44.4. Major changes in the concentration of aluminum
(figure 12b) however indicate that erosion from the Summitville mine site has increased
significantly since 1976. The concentration of aluminum at the Cropsy Creek site in the 1994
geochemical baseline exceeds 9.0 weight percent. The aluminum concentration in the lower
Alamosa River increased from about 7.1 weight percent in the 1976 baseline to about 8.7 weight
percent in the 1994 baseline.

Because the major elements make up the bulk of the mass of the sediments, it may be
easier to see the impact of these changes by normalizing the geochemical data to an element
whose concentration should not change as a result of the open-pit mining activity at Summitville.
Hydrologic sorting of mineral phases on the basis of mineral density during transport in the river
results in a systematic decrease in some element concentrations in the stream sediments along the
river course. This phenomenon can be readily seem in several plots of metals not associated with
the Summitville deposit. Profiles of the element titanium are shown as an example (fig. 13).
Note in figure 13a that there is more variation in the concentration of titanium in stream
sediments from the tributaries (both 1976 and 1994 sampies are plotted) than there is in the river
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Figure 12A. Geochemical profiles for iron for both stream and river sediments from the 1976

and the 1994 geochemical baseline studies. Abbreviations are the same as those used in
fig. 8A.
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Figure 12B. Geochemical profiles for aluminum for both stream and river sediments from the
1976 and the 1994 geochemical baseline studies. Abbreviations are the same as those
used in fig. 8A.
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Figure 13A. Geochemical variation of titanium in stream sediments of the Alamosa River basin.
Note that the data from the two geochemical baseline studies are grouped according to
the alteration state of bedrock type underlying the tributary drainage basins.
Abbreviations are the same as those used in fig. 8A.
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Figure 13B. Geochemical profile for titanium in river sediments of the Alamosa River basin.
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sediments. Alteration of the bedrock within these tributary basins does not contribute to the
variation of titanium in the stream sediments. Gray and Coolbaugh (1994) state that titanium in
the acid-sulfate alteration zone of the Summitville deposit was conserved indicating that the
alteration process did not move titanium into or out of the alteration zone. Furthermore, there
is little variation of titanium between rock types in the Alamosa River basin (Lipman, 1975,
tables 9 and 10). Although the concentration of titanium decreases downstream from the
headwaters in sediments of both the Alamosa River and the Wightman Fork as a result of the
hydrologic sorting process described above, titanium is present at concentration levels that are
readily determined in all stream-sediment samples. The titanium profiles are relatively smooth
although the 1976 profile is offset from that of the 1994 profile suggesting that sampling
techniques used in the two baselines were somewhat different.

We have chosen titanium as the element against which to plot the major-element
geochemical data (compare figs. 12 and 14). Element-ratio plots (fig. 14a) indicate that iron
concentrations increased about ten percent in the 1994 sediment baseline of the lower Alamosa
River relative to iron present in the 1976 geochemical baseline (that is the ratio increased from
about 10 to 11). This trend is not readily apparent in the total element data (fig. 12a), in fact
it appears that the iron content has decreased. (Note that the normalized iron concentration at
sitc AR44.4 is extremely elevated; we conclude that this site may be non-representative of the
sediment in the lower Alamosa River.) The change in iron concentrations between the 1976 and
the 1994 sediments baselines is largely in response to the dramatic changes in aluminum content
between the two years. Aluminum concentrations increased by thirty to forty percent (that is,
from a ratioed value of about 14 to about 18-20, fig. 14b) between the 1976 and the 1994
geochemical baselines! The impact of the increased aluminum concentration is not as readily
apparent in the plot showing total aluminum concentrations (fig. 13b). Since there is
substantially no difference in the aluminum contents of the HYDXAMN and the HCI-PRX
extraction data between the two baselines, we conclude that the increase in aluminum reflects a
substantial increase in clay minerals being eroded and deposited in the lower Alamosa River
following open-pit mining at Summitville. Removal of a large amount of material from the
Summitville deposit to the waste piles has exposed a substantial amount of material containing
large amounts of kaolinite to rapid erosion (Plumlee and others, 1995b; Gray and others, 1994).
Elevated concentrations of aluminum in the sediments from Cropsy Creek corroborate this
interpretation.
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Figure 14A. Geochemical variation of aluminum in river sediments only (ratioed to titanium)
from the 1976 and the 1994 geochemical baselines. Abbreviations are the same as those
used in fig. 8A.

32



Concentration Ratio (Fe/Ti)

Alamosa River basin, Colo.
Variation of Iron, Total digestions

N
O
o

—t
Q
o

| A
14.0 * / \

S\
\-s/ Lo

—t
()
o

12.0
10.01 = — ) ‘
8.0 t I 1 1 1
0 5 10 15 20 25 30
Distance (river miles)
—=— AR, 1976 —®— AR, 1994 —><— WF, 1976 —&— WF, 1994

Figure 14B. Geochemical variation of iron in river sediments only (ratioed to titanium) from the
1976 and the 1994 geochemical baselines. Abbreviations are the same as those used in
fig. 8A.
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LEAD-ISOTOPIC DATA AND INTERPRETATION

Lead has four naturally occurring isotopes: *Pb accumulates from the decay of Z*U,
27Pb accumulates from the decay of #°U, ®Pb accumulates from the decay of #*Th, and **Pb
has no radioactive parent. Since the half-life of each of the parent isotopes differs, the isotopic
ratios of lead change systematically with time (for example see Gulson, 1986). Crustal rocks
contain low and variable concentrations of lead (generally 5-50 ppm), uranium (2-10 ppm), and
thorium (8-40 ppm) and have variable isotopic ratios of lead. However, in mineral deposits,
particularly those containing galena (PbS), the hydrothermal processes separate lead from its
parent isotopes and thus, the isotopic signature is "frozen in" by the process of ore-deposit
formation at the time the mineral deposit is formed. The composition of lead in mineral deposits
often has a very limited isotopic range. Weathering of these mineral deposits, as described
above, releases and homogenizes the lead in the mineral deposit; the analysis of this homogenized
lead in the stream sediments provides a lead-isotopic signature of the mineral deposit (Gulson and
others, 1992). We use the lead-isotope signature of the labile lead in iron-oxide coatings
deposited on the grain coatings in the minus-100-mesh fraction of the stream sediments (that is,
the 2M HCI-H,0, leachates) to "fingerprint" and quantify the contribution from the mineral
deposits in the headwaters.

Lipman and others (1978) developed isotopic and chemical data and interpreted the
evolutionary history of the rocks of the San Juan volcanic field. They argued that the magmas
were formed by partial melting of previously existing crustal rocks ranging in age from 1.8 to
1.45 billion years. Because these pre-existing crustal rocks contained variable amounts of
uranium, thorium, and lead, the radiogenic growth of lead in these individual source regions
resulted in a heterogeneous lower crust. Partial melting of this lower crustal source in Oligocene
time produced magmas that had different lead-isotopic ratios. Hydrothermal fluids leached
sources 1n the crust that also had variable lead-isotopic compositions and resulted in ore deposits
in the Alamosa River basin that have discrete lead-isotopic compositions. This evolutionary
process is common in silicic volcanic fields in large cratonic masses such as the San Juan
volcanic field.

The lead-isotopic data from stream sediments collected from the tributaries, like the
geochemical data, reflect the rocks being eroded within the drainage basin. Published lead-
isotopic analyses of these different rock units are plotted in figure 15. There are substantial
differences in lead-isotopic compositions between the individual rock units. The isotopic
composition of lead from tributaries underlain by both fresh and altered rock reflect the isotopic
composition of lead in the rocks that underlie their respective drainage basins.

The lead-isotopic composition of sediments from the Wightman Fork below the
Summitville deposit and on the lower Alamosa River have a uniform lead-isotopic composition
in the 1976 geochemical baseline at an average *Pb/**Pb value of about 18.05 (fig. 16). We
interpret this lead-isotopic signature to be dominated by lead derived from the weathering of the
South Mountain quartz latite that hosts the Summitville deposit. This is not a surprising result
because the Summitville deposit is a low-lead and low-zinc deposit (Gray and Coolbaugh, 1994)
and has produced acid-mine-drainage in the Wightman Fork for many years. The lead-isotopic
composition in the 1976 stream sediments does not match the composition of water draining from
the Chandler and Reynolds adits and seeps within the open-pit (table 2) nor that of the base metal
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Figure 15A. 2%5Pb/2%Pb isotopic profile showing the variation of lead-isotopic composition in
stream sediments from tributary drainage basins containing both hydrothermally altered
and fresh bedrock compared with the lead-isotopic compositions determined in river
sediments. Also shown by the arrows on the right-hand side of the diagrams are the lead-
isotopic compositions of the individual rock units present in the Alamosa River basin
(CMR, Cropsy Mountain rhyolite; SMQL, South Mountain quartz latite; PCR, Park
Creek rhyolite; TMT, Treasure Mountain tuff; and SVA, Summitville andesite. There
are two analyses of SVA, the upper one plots where it is shown on the figure, the lower
one is approximately equivalent to the analysis plotted for PCR (data from table 3).
Analytical error for the lead-isotopic ratios plotted is smaller than the size of the symbol
(see tables A8a and A8b). Abbreviations at the top of the figure are the same as those
used in fig. 8A.
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Figure 15B. 2%8Pb/2%Pb isotopic profile showing the variation of lead-isotopic composition in
stream sediments from tributary drainage basins containing both hydrothermally altered
and fresh bedrock compared with the lead-isotopic compositions determined in river
sediments. Also shown by the arrows on the right-hand side of the diagrams are the lead-
isotopic compositions of the individual rock units present in the Alamosa River basin
(CMR, Cropsy Mountain rhyolite; SMQL, South Mountain quartz latite; PCR, Park
Creek rhyolite; TMT, Treasure Mountain tuff; and SVA, Summitville andesite. There
are two analyses of SVA, the upper one plots where it is shown on the figure, the lower
one is approximately equivalent to the analysis plotted for PCR (data from table 3).
Analytical error for the lead-isotopic ratios plotted is smaller than the size of the symbol
(see tables A8a and A8b). Abbreviations at the top of the figure are the same as those
used in fig. 8A.
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Figure 16A. 2%°Pb/2*Pb isotope profiles showing the change in lead-isotopic composition in river
sediments from the Alamosa River and the Wightman Fork. River-sediment samples
from the different geochemical baselines are connected by different line types. The
composition of the Summitville base metal sulfide-bearing barite veins and the aqueous
seeps in the Summitville open-pit are indicated by the arrow labeled ORE. The
composition of galena from the Miser Mine near Jasper (fig. 4) is indicated by the arrow
on the river profile. Analytical error for the lead-isotopic ratios plotted is smaller than
the size of the symbol (see tables A8a and A8b). Abbreviations at the top of the figure
are the same as those used in fig. 8A.
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Figure 16B. 2%*Pb/2%Pb isotope profiles showing the change in lead-isotopic composition in river
sediments from the Alamosa River and the Wightman Fork. River-sediment samples
from the different geochemical baselines are connected by different line types. The
composition of the Summitville base metal sulfide-bearing barite veins and the aqueous
seeps in the Summitville open-pit are indicated by the arrow labeled ORE. The
composition of galena from the Miser Mine near Jasper (fig. 4) is indicated by the arrow
on the river profile. Analytical error for the lead-isotopic ratios plotted is smaller than
the size of the symbol (see tables A8a and A8b). Abbreviations at the top of the figure
are the same as those used in fig. 8A.
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sulfide-bearing barite veins present in the Summitville deposit (table 3). Both the acidic waters
sampled from the open pit and the galenas analyzed have a **Pb/*Pb value of about 17.82.
This is a surprising result that indicates that the bulk of the lead load in the Wightman Fork
comes from erosion of altered material in the Summitville deposit in the South Mountain quartz
latite rather than from the acid-mine drainage caused by flow from the Reynolds adit.

The isotopic composition of lead in sediments in the Wightman Fork in the 1994
geochemical baseline has a different, less radiogenic lead-isotopic composition than that from the
1976 geochemical baseline. The average value of lead in the sediments collected in the
Wightman Fork below the Summitville open pit had a ?*Pb/”*Pb value of about 17.95. We
interpret the lead-isotopic compositions measured in the stream sediments of the Wightman Fork
in the two different baselines to reflect mixtures of rock lead derived from sulfuric acid attack
of the South Mountain quartz latite and lead derived from the base metal sulfide-bearing barite
veins of the Summitville deposit. The isotopic composition of lead in the stream sediments from
the Lower Wightman Fork in the 1976 geochemical baseline can be accounted for largely by the
isotopic composition and variation of lead in the South Mountain quartz latite. However, the
change in the isotopic composition of lead in the 1994 geochemical baseline reflects a substantial
addition of lead from the base-metal ores in the Summitville deposit.

One of the powerful uses of lead isotopes in environmental geochemistry is the leverage
they provide to calculate the contribution of a point-source of metal contamination to the total
metal load in the sediments of the Alamosa River. We can calculate the contribution of
sediments from the Summitville open-pit mine to the sediment load of the Wightman Fork by the
two sets of 1sotopic data. The lever rule calculation is shown in the following equation:

Pbps = {[Rs6 - Real / [Ry6 - Rorel} x 100

Where: Pbps is the percent of the lead load attributed to a specific point-source of
lead contamination,

R 76 is the lead isotope ratio of the stream sediments of the Wightman Fork
from 1976 geochemical baseline,

Rg 4 is the lead isotope ratio of the stream sediments of the Wightman Fork
from 1994 geochemical baseline, and

R ore is the lead isotope ratio of the ore lead from the Summitville deposit.

We use an average value of ***Pb/**Pb = 18.05 and 2®*Pb/?*Pb = 37.42 for the composition
of lead from the sediments of the Wightman Fork below the Summitville deposit in the 1976
geochemical baseline, we use an average value of 2°Pb/?*Pb = 17.95 and *®*Pb/**Pb = 37.33
for the composition of lead from the sediments of the Wightman Fork below the Summitville
deposit in the 1994 geochemical baseline, and we use an average value of *Pb/?*Pb = 17.82
and **Pb/**Pb = 37.18 for the composition of lead from the ore from the Summitville deposit
to calculate the contribution of lead to the Wightman Fork resulting from the open-pit mining
operation of SCMCI. We calculate that about 40 percent (that is, 43 percent using the **Pb/**Pb
data and 38 percent using the **Pb/**Pb data) more of the lead in the 1994 stream sediments
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sediments from the lower Wightman Fork was from the base metal sulfide-bearing barite veins.
Since the composition of lead measured in the sediments of the Wightman Fork was not reflected
in the 1994 sediments sampled from the lower Alamosa River, this change in lead-isotopic
composition in the sediments of the Wightman Fork may represent a relatively recent event such
as the increased release of metals and erosion at the site following the cessation of open-pit
mining at the end of 1991, thus reducing the amount of rock lead derived from erosion of
material from the waste dumps. If a sample had been collected from just below the intersection
of the Wightman Fork with the Alamosa River during the 1994 geochemical baseline, this change
should have been detected. However, because the nearest sediment-sample site analyzed is about
4 miles downstream, we were unable to detect this change in lead-isotopic composition in the
lower Alamosa River sediments.

The lead-isotopic data from the two geochemical baselines also shows that the contribution
of lead from the Wightman Fork totally dominates the lead budget of the lower Alamosa River
in both the 1976 and the 1994 geochemical baselines. A baseline geochemical study of stream-
sediment cores, accompanied by 2!°Pb dating would be required to determine the pre-mining
geochemical and lead-isotopic baselines of the Wightman Fork. Given that the oxidized ore
deposit was exposed at the surface in 1870 (Raymond, 1877) we would expect that the isotopic
composition of lead in the Wightman Fork would have been the same prior to mining. However,
the metal load being added to the lower Alamosa River prior to mining remains to be
determined.

COMPARISONS BETWEEN THE GEOCHEMICAL BASELINES DETERMINED
USING STREAM-SEDIMENT AND WATER DATA

Environmental regulations governing impact of mining sites are based, in part, upon water
quality (for example, see table 2 for the regulatory requirement for the Summitville mine site,
Hutchinson and Cameron, 1995, p. 113). Although numerous studies of water quality of streams
in the Alamosa River basin have been conducted in the recent past, neither complete sets of water
data nor water samples are available from the past to assess either the impact of mining activity
on water quality or to evaluate the geochemical baseline prior to the onset of mining (Miller and
McHugh, 1994; Bove and others, 1995; Brown, 1995; Cain, 1995; Hutchinson and Cameron,
1995; Kirkham and others, 1995; Logsdon and Mudder, 1995; Miller and Van Zyl, 1995;
Mueller and Mueller, 1995; Ortiz and others, 1995; Roeber and others, 1995; Walton-Day and
others, 1995; Ward and Walton-Day, 1995). Furthermore, because water chemistry changes in
response to spring runoff and storm events, the water chemistry represents an instantaneous
measure of the state of the environment. If the relationship between annual variations in stream
chemistry and the concentration of metals trapped in the fine-grained sediment in the stream bed
could be established, perhaps a better measure of the long-term change in conditions resulting
from mining activities could be defined.
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Table A8a. Pb-isotopic data from 2M HC1-H,0, extracts of NURE
stream-sediment samples, Alamosa river basin, Colo.

X5pb 2Pb Xpb
Sample No. Latitude Longitude 24ph 24pp X4ph
Alamosa River Samples
Composite 37.3631 106.6200 18.356 15.575 38.042
Duplicate 37.3631 106.6200 18.331 15.569 38.021
C26777 37.3697 106.5889 18.698 15.590 37.925
C26777D! 18.693 15.593 37.910
C26776 37.3717 106.5844 18.325 15.555 37.744
C26467 37.3778 106.5678 18.237 15.549 37.760
C26456 37.3817 106.5681 18.247 15.559 37.792
€26805 37.4089 106.5050 18.052 15.523 37.475
c26803 37.4228 106.4794 18.266 15.549 37.748
C26804 37.4211 106.4739 18.441 15.597 38.115
c26806 37.4189 106.4656 18.421 15.580 38.015
c26811 37.3897 106.3781 18.050 15.524 37.449
c26812 37.3875 106.3767 18.441 15.574 38.058
Wightman Fork Samples
c26788 37.4347 106.6372 18.382 15.568 37.858
c26793 37.4292 106.5850 18.253 15.578 37.796
C26794 37.4297 106.5606 18.049 15.533 37.415
C26795 37.4247 106.5378 18.055 15.538 37.424
C26796 37.4044 106.5217 18.095 15.539 37.440
NIST Standard Samples
SRM 2704 18.747 15.630 38.413
SRM 2704D 18.756 15.644 38.450
SRM 2709 19.067 15.675 38.959
SRM 2709D 19.066 15.674 38.955
SRM 2711 17.089 15.446 36.980

T"A1l samples analyzed in Branch of Isotope Geology, USGS;
suffix D indicates analyst ran sample twice as an analytical
duplicate. Analytical errors are % 0.012,

+ 0.015, and * 0.04 for the three ratios given; data
normalized to certified values for NIST standards
SRM 981 and SRM 982 to correct for thermal fractionation.
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Table A8b. Pb-isotopic data from 2M HCl-H,0, extracts of EPA
stream-sediment samples, Alamosa River basin, Colo.

Sample No. EPA No. 24pb 24pb 24pb

Alamosa River samples'

AR-49.5 8-118157 18.100 15.539 37.784
IC-1 8-118152 18.310 15.565 37.813
AR-48.4 8-117293 18.226 15.537 37.708
AC-1 8-117287 18.124 15.530 37.536
AR-48.1 8-117282 18.201 15.549 37.694
BC-1 8-117275 18.235 15.551 37.681
AR-41.0 8-116845 18.043 15.531 37.445
AR-39.5 8-116831 18.066 15.530 37.467
AR-44.4 8-116826 18.044 15.529 37.452
AR-44.4D 8-116826 18.034 15.523 37.420
AR-34.5 8-116820 18.070 15.533 37.483
Park Creek sample
PK-1 8-118210 18.392 15.583 37.888
Wightman Fork samples'
PL-0 8-118908 18.584 15.645 38.324
CC-1 8-118230 18.121 15.540 37.532
WF-5.5 8-118204 17.961 15.525 37.329
WF=-1D 8-118903 17.994 15.518 37.349
WF-1.3 8-118180 17.948 15.531 37.328
WF-1.0 8-118204 17.93¢% 15.526 37.31¢
NIST Standard Reference Materials'
SRM 2704 18.778 15.649 38.476
SRM 2711 17.097 15.436 36.943

! samples analyzed in Branch of Isotope Geology, USGS; suffix D
indicates analyst ran sample twice as an analytical duplicate.
Analytical errors are * 0.012, % 0.015, and % 0.04 for the
three ratios given; data normalized to certified values for
NIST standards SRM 981 and SRM 982 to correct for thermal
fractionation.
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